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Abstract
This paper constitutes a generalization to arbitrary states of rotation of an earlier
work in which we showed Liouville integrability of the expanding and rotating
gas cloud model of Ovsiannikov and of Dyson in cases of rotation around a
fixed principal axis.

PACS numbers: 0230J, 0220S

1. Introduction

Recently (Gaffet 2000a) the spinning cloud model of Ovsiannikov (1956) and Dyson (1968)
has been shown to be a completely integrable Hamiltonian system (in the Liouville sense),
under the restricting conditions of rotation of the cloud around a fixed principal axis and of
zero vorticity.

In this paper we extend this result to all cases of rotation without vorticity, through the
introduction of two new integrals of the motion: I6, which generalizes a corresponding integral
found in our earlier study; and an altogether new integral, L6, which identically vanishes in
cases of rotation around a fixed axis.

Let us recall briefly that the model of Ovsiannikov and Dyson constitutes an ordinary
differential reduction of the equations of gas dynamics, characterized by a linear relation
between Eulerian (�x) and Lagrangian coordinates (�α):

xi = Fij (t)αj (1.1)

and a Gaussian distribution of density. It describes an expanding and rotating gas cloud (which
we take to be monatomic, with adiabatic index γ = 5/3) of ellipsoidal shape, with principal
axes of length D1, D2 and D3.

In section 2 we introduce a new formalism whose main advantage is its invariance under
the group of permutations of the ellipsoid’s axes. The basic variables are then the permutation
invariants constructed by forming simple combinations of the matrix F and of V ≡ ḞF−1,
which is the matrix describing the velocity distribution �v(�x) in a Eulerian framework:

vi = Vijxj . (1.2)

In sections 3 and 4 we determine the integrals of motion in the two limits where the matrix V

is either large or small; the usefulness of these results arises from the fact that the highest- and
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lowest-degree terms (in powers of V ) in any integral of motion must be integrals of these two
limiting cases, respectively.

In section 5 we construct the generalized integral I6, which is found to admit a particularly
simple expression in this permutation invariant formalism, and the algebraic constraint
(det D = 1) is reformulated in terms of permutation invariant variables; this turns out to
be a crucial step toward the determination of the integral L6.

In section 6 the last missing integral L6 is constructed. Its leading term curiously involves

a three-vector �̃
j , which is associated with the angular momentum vector �j through a symmetry

that inverses the lengths of the principal axes, while preserving the traceless part of the matrixV .

2. A permutation invariant formalism

2.1. The new system of variables

We start with the equations of motion, as derived in a recent work (Gaffet 2000b):
dv

du
+ v2 − 1

3
Tr(v2) = [ω; v] + D−2 − 1

3
Tr(D−2) (2.1)

where the symbol [ω; v] denotes the commutator of ω and v, the independent variable u is the
integral of temperature (Te) over time,

u =
∫

Te dt (2.2)

v is the 3 × 3 symmetric matrix which is obtained by taking the traceless part, V − 1
3 Tr(V ) of

V ≡ ḞF−1, transforming it to the moving frame through the appropriate rotation and finally
rescaling it by a factor Te. The matrix D = diag(D1, D2, D3) has been rescaled too (by a factor√
Te) in such a way that D has unit determinant:

det(D) ≡ D1D2D3 = 1. (2.3)

The antisymmetric matrix ω (which represents the angular velocity of the cloud) is fixed
by the off-diagonal elements of v:

ω23 = I1

Î1

v23 (2.4)

where
I1 ≡ D2

2 + D2
3

Î1 ≡ D2
2 − D2

3

together with the equations deducible by circular permutation of the indices.
The system must be completed by the equations of evolution of D:

d

du
�nD1 = v11 (and circular permutation). (2.5)

To obtain a permutation invariant formulation of the system (2.1), (2.5) we simply start
with the two variables X0, Y0:

X0 = Tr(D2)

Y0 = Tr(D−2)
(2.6)

and differentiate several times in sequence, until a closed system of differential equations has
been obtained. In the process, new auxiliary variables X1, X2, Y1, Y2, T and P have been
introduced, and the system reads

T ′(u) = 3P − Y1 (2.7a)

P ′(u) = − 2
3T

2 + ( 2
3T Y0 + Y2) (2.7b)
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X′
0(u) = 2X1 (2.8a)

X′
1(u) =

(
X2 − 2

3
TX0

)
+

(
3 − X0Y0

3

)
(2.8b)

X′
2(u) = − 4

3TX1 − 2
3Y0X1 (2.8c)

Y ′
0(u) = −2Y1 (2.9a)

Y ′
1(u) = −

(
3Y2 +

2

3
T Y0

)
+ 2

(
Y 2

0

3
− X0

)
(2.9b)

Y ′
2(u) = 4( 2

3T Y1 − PY0) + 2( 2
3Y0Y1 + X1). (2.9c)

The equations (2.7a) and (2.7b) determine the evolution of the variables T and P , which are
in fact the coefficients of the characteristic equation of the matrix v:

v3 + T v − P = 0. (2.10)

The equations (2.8) and (2.9) similarly define the evolution of six variables X0, X1, X2, Y0, Y1

and Y2, which may be identified with{
Xn = Tr(DvnD)

Yn = Tr(D−1vnD−1)
(n = 0, 1, 2). (2.11)

2.2. Inverse transformation formulae

In order to express the quantities of interest, such as the total energy and angular momentum
in terms of T , P , Xn and Yn we need to invert the transformation formulae that give these new
variables in terms of the matrices D and v.

The determination of D merely involves the two variables X0 and Y0, as the three
eigenvalues of � ≡ D2 are the roots of the characteristic equation:

�3 − X0�
2 + Y0� − 1 = 0. (2.12)

Next, to obtain the diagonal part of v, we only need to consider the two variables X1 and Y1 in
addition to the elements of �:

v11 = −(�1X1 + Y1)

Î2Î3

(2.13)

(and circular permutation of the indices—except, of course, the indices of X and Y ). Lastly,
the off-diagonal elements of v are determined by their squares:

Î2Î3v
2
23 = I2I3(T − T0) + �1(X2 − X20) + (Y2 − Y20) (2.14)

where T0, X20 and Y20 are quadratic combinations of X1 and Y1:

−2hT0 ≡ �2X
2
1 + 2�1X1Y1 + �0Y

2
1

hX20 ≡ �3X
2
1 + 2�2X1Y1 + �1Y

2
1

hY20 ≡ �1X
2
1 + 2�0X1Y1 + �−1Y

2
1

(2.15)

h = (Î1Î2Î3)
2 (2.16)

and

�n =
∑
i

(�n
i Î

2
i ). (2.17)
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The
∑

n and h are polynomial functions of X0 and Y0:

�0 = 2(X2
0 − 3Y0)

�1 = (X0Y0 − 9)
�2 = 2(Y 2

0 − 3X0)

(2.18)

and

3h = (�0�2 − �2
1). (2.19)

Other sums
∑

n may be easily found through the recursion relation:

�n+3 = X0�n+2 − Y0�n+1 + �n. (2.20)

It is worth noting that the symmetry that exchanges X0 and Y0 changes
∑

1+n to
∑

1−n.
Let us finally remark that the constraint det � = 1 (equation (2.3)) must translate into

a corresponding algebraic constraint relating the eight new variables; that question will be
examined later (section 5).

2.3. The energy constant

As is well known, the gas cloud model of Ovsiannikov and of Dyson may be viewed
equivalently as representing Hamiltonian motion of a point mass in nine-dimensional Euclidean
space (the space of Cartesian coordinates Fij ); and, when the gas is monatomic—as assumed
here—the radial motion may be separated out, resulting in a Hamiltonian motion on the eight-
dimensional unit hypersphere. The energy constant of that hyperspherical motion, denoted
Ê in our earlier works, is a combination of the energy E of the original motion (in nine-
dimensional flat space) and of two additional constants (Anisimov and Lysikov 1970). Its
expression in terms of the new variables is particularly simple:

2Ê = (X0X2 − X2
1) + 3X0 (2.21)

where the first part (in parentheses) represents kinetic energy, and the last term, 3X0, thermal
(or potential) energy.

2.4. The angular momentum

The angular momentum vector �j (in the moving frame) is related to the angular velocity
vector �ω, in the absence of vorticity, as (Gaffet 2000a, b)

j1 = Î 2
1

I1
ω1 (and circular permutation) (2.22)

or, directly in terms of the off-diagonal elements of v, as (see equation (2.4), where ω23 = ω1

etc)

j1 = Î1v23 (and circular permutation). (2.23)

The three components of the angular momentum �J in the fixed frame remain, of course,
constant; the total angular momentum, �J 2 = �j 2, is also constant, and is expressed in a
permutation invariant way by the following simple formula:

�J 2 = (X0X2 − X2
1) + (3Y2 + 4T Y0). (2.24)

The first group of terms on the right-hand side is just the kinetic energy (see equation (2.21)) of
hyperspherical motion, so we can rewrite the constant of the motion in an even simpler form:

1
3 (

�J 2 − 2Ê) = ( 4
3T Y0 + Y2) − X0. (2.25)
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3. The integrals of hyperspherical geodesic motion

Each of the eight new variables is a homogeneous function of the matrix v, characterized by
a certain degree: T is of degree two, P of degree three and Xn and Yn both of degree n.
The derivative of any variable (of degree n), as given by the equations of motion (2.7)–(2.9),
contains two parts: a first one of degree n + 1, and another of degree n − 1. These two parts
manifestly represent the asymptotic forms of the system in the two limits of large and of low
velocity, respectively. As the lower-degree terms represent the dynamical effect of thermal
pressure inside the cloud, while the higher-degree ones represent purely inertial effects, the
large-velocity limit may be viewed as describing hyperspherical geodesic motion. In that limit
the system (2.7)–(2.9) reduces to

T ′(u) = 3P (3.1a)

P ′(u) = − 2
3T

2 (3.1b)

X′
0(u) = 2X1 (3.2a)

X′
1(u) = (X2 − 2

3TX0) (3.2b)

X′
2(u) = − 4

3TX1 (3.2c)

Y ′
0(u) = −2Y1 (3.3a)

Y ′
1(u) = −(3Y2 + 2

3T Y0) (3.3b)

Y ′
2(u) = 4( 2

3T Y1 − PY0). (3.3c)

The first thing to be remarked is that equations (3.1a) and (3.1b) constitute a closed sub-system
for the variables T and P ; that the equations (3.2) are then a linear system for the Xi and the
equations (3.3) another (independent) linear system for the Yi .

The closed sub-system has an obvious first integral,

I 6
6 = 27P 2 + 4T 3 (3.4)

which is the discriminant of the characteristic equation of v (equation (2.10)). The integrals
of the linear sub-systems must be homogeneous functions of Xn (respectively Yn); each sub-
system possesses its full complement of first integrals: one linear, one quadratic and one
cubic.

3.1. The integrals of the linear system for X

The integral linear in X is of degree four in v:

ε4 = 3TX2 − 9PX1 − T 2X0. (3.5)

The integral of degree two in X,

ε2 = (X0X2 − X2
1) (3.6)

is quadratic in v, and in fact is the kinetic energy (see equation (2.21)), as expected. Finally,
an integral cubic in X, and of degree six in v, denoted ε6, will be found in section 5 as a
by-product of the determination of the form of the algebraic constraint.
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3.2. The integrals of the linear system for Y

The integral linear in Y (degree two in v) reads

η2 = Y2 + 4
3T Y0 (3.7)

and coincides with the leading term of the exact integral (2.25), as expected. There exists an
integral quadratic in Y (degree 10 in v), but its expression is not particularly simple and it is
probably not of interest in the present problem.

The integral cubic in Y , degree six in v, will also be presented in section 5.

3.3. A symmetry relating the linear systems for X and Y

Let us consider the following variable:

Z = 3X2 + TX0. (3.8)

By differentiation we obtain Z′(u) = 3PX0 − 2TX1, and

Z′′(u) = − 2
3T Z. (3.9)

Starting now with the variable

Z̃ = 3PY0 + T Y1 (3.10)

we find

Z̃′(u) = −( 8
3T

2Y0 + 3PY1 + 3T Y2)

and then

Z̃′′(u) = − 2
3T Z̃

i.e. Z̃ satisfies the same second-order o.d.e. (equation (3.9)) as Z does.
In particular, the Wronskian w6 constructed from Z and Z̃ must be an integral of free

(geodesic) motion:

w6 = (Z̃Z′ − ZZ̃′) (3.11)

w6 is algebraically related to the already determined first integrals, which form a complete set.
Let us mention the existence of further new integrals, cubic in Z:

(PZ3 − T Z2Z′ − Z′3)

and

{(27P 2 + 2T 3)Z3 − 27PTZ2Z′ + 18T 2ZZ′2 + 27PZ′3}.
Owing to the symmetry of the roles of Z and Z̃, cubic integrals in Z̃ of exactly the same form
also exist.

4. The low-velocity limit

Let us now consider the system in the opposite limit of zero velocity:

T ′(u) = −Y1 (4.1a)

P ′(u) = ( 2
3T Y0 + Y2) (4.1b)
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X′
0(u) = 0 (4.2a)

X′
1(u) =

(
3 − X0Y0

3

)
(4.2b)

X′
2(u) = − 2

3Y0X1 (4.2c)

Y ′
0(u) = 0 (4.3a)

Y ′
1(u) = 2

(
Y 2

0

3
− X0

)
(4.3b)

Y ′
2(u) = 2( 2

3Y0Y1 + X1). (4.3c)

X0 and Y0 are obvious constants of the motion. The three components of angular momentum
( �j) in the moving frame are also constant—since their evolution is governed by

d �j
du

= �j ∧ �ω (4.4)

where the right-hand side, of purely inertial origin, vanishes in the present limit. In other
words, the matrix D and the off-diagonal part of v are both constants of the motion.

This suggests introducing a transformation, here denoted (T̃ ), which consists of the
inversion of D, without changing v: (T̃ ) exchanges the Xn and Yn without affecting T and P ;
and transforms (see equations (2.3) and (2.23)) the angular momentum �j into a new constant

vector �̃
j :

j̃1 = −�1j1 (and circular permutation). (4.5)

One may further introduce a corresponding vector �̃
J in the fixed frame—related to �̃

j by the
same rotation that relates �J and �j .

The three constants of angular momentum may then be conveniently represented by

�J 2 = (X0X2 − X2
1) + (3Y2 + 4T Y0)

− �J · �̃
J = (X0Y0 + 3)T + (X0Y2 + Y0X2) + X1Y1

�̃
J

2
= (Y0Y2 − Y 2

1 ) + (3X2 + 4TX0).

(4.6)

In view of the formula (2.14) determining the off-diagonal elements of v, these three
constants must be linear combinations, with constant coefficients, of (T − T0), (X2 − X20)

and (Y2 − Y20); therefore they are linear homogeneous combinations of T , X2, Y2, X2
1, X1Y1

and Y 2
1 .

Still another constant is the Wronskian constructed from X1 and Y1:

W1 = (X1Y
′
1 − Y1X

′
1)

= 1
3 (�2X1 + �1Y1). (4.7)

5. The algebraic constraint

As mentioned above, the constraint (2.3) that D should have unit determinant translates into
an algebraic constraint relating the new variables T , P , Xn and Yn. Before discussing this,
let us now introduce a new exact integral of the motion, based on the results of the preceding
sections.
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5.1. The new integral I6

The first integral of free motion I 6
6 (equation (3.4)) turns out to be the leading term of an exact

integral, I6, of the complete system (2.7)–(2.9), including the effect of thermal pressure. The
following term in the expansion, I 4

6 , quartic in v, is given by the equation

−dF I
4
6 = d

du
I 6

6

= 6[6PT Y0 − 2T 2Y1 + 9PY2] (5.1)

where dF means the derivative d/du as defined by equations (3.1)–(3.3), in the absence of
pressure forces. As the operation of dF on a monomial in X and Y (with coefficient function
of T and P ) produces a homogeneous polynomial of the same degree in X, and also in Y , it is
clear that I 4

6 must be linear homogeneous in Y , and independent of X. Further, being quartic
in v, it must be a linear combination of the following three terms: T 2Y0, PY1, T Y2; in this way
we obtain

I 4
6 = 6[4T 2Y0 + 9PY1 + 6T Y2]. (5.2)

The next term in the expansion is given by

−dF I
2
6 = d

du
(I 6

6 + I 4
6 )

= 36

[
Y1Y2

2
+ T (Y0Y1 + 2X1) + P(Y 2

0 − 3X0)

]
. (5.3)

By the same reasoning, I 2
6 must be a sum of monomials of the types Yi Yj and Xi , with

coefficients that are functions of T and P ; and, being quadratic in v, there are only five
possible terms:

TX0 X2 T Y 2
0 Y0Y2 Y 2

1 .

The resulting expression,

I 2
6

36
=
(
Y0Y2 − Y 2

1

4
+ 3X2

)
+ T (Y 2

0 + X0), (5.4)

is an integral of the limit of low-velocity motion (section 4); therefore, the sum I 6
6 + I 4

6 + I 2
6

constitutes an exact integral of the system (2.7)–(2.9).
Let us point out that I 2

6 , being linear homogeneous in T , X2, Y2 and Y 2
1 , is of the same

general type as the angular momentum integrals (4.6), and in fact is a linear combination of
them and of the square of the Wronskian W1 (see equation (4.7)):

−h

9
I 2

6 = �2
2

�J 2 + 2�1�2 �J · �̃
J +

(4�2
1 − �0�2)

3
�̃
J

2
+ 9W 2

1

= (�2 �J + �1
�̃
J )2 − h

�̃
J

2
+ 9W 2

1 . (5.5)

5.2. The algebraic constraint

The most direct way to derive this is to observe that the product P1 ≡ v12v23v31 of the off-
diagonal elements of v is given rationally by the general formula

2P1 = (P − P0) + Q1 (5.6)

where P0 ≡ v11v22v33 is the product of diagonal elements, and Q1 ≡ v11v
2
23+ (circular

permutation).
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On the other hand, the square P 2
1 of P1 may be independently found by means of the

formula (2.14), which gives the squares of the off-diagonal elements. The algebraic constraint
thus reads

(P1)
2 = P 2

1 . (5.7)

We obtain—based on the inverse transformation formulae (2.13)–(2.15)—the following
expression for P1:

−2hP1 = −h(P − P0) + (SX1 + S̃Y1)(T − T0)

+(�2X1 + �1Y1)(X2 − X20) + (�1X1 + �0Y1)(Y2 − Y20)

= − hP + T (SX1 + S̃Y1) + X2(�2X1 + �1Y1) + Y2(�1X1 + �0Y1)

+2[X3
1 + X2

1Y0Y1 + X0X1Y
2
1 + Y 3

1 ] (5.8)

where

S = (�0 + X0�2)

S̃ = (�2 + Y0�0)
(5.9)

while P 2
1 is given by

hP 2
1 = (X0Y0 − 1)2(T − T0)

3 + 2(X0Y0 − 1)(T − T0)
2[Y0(X2 − X20) + X0(Y2 − Y20)]

+(T − T0)[(Y
2
0 + X0)(X2 − X20)

2 + 3(X0Y0 − 1)(X2 − X20)(Y2 − Y20)

+(X2
0 + Y0)(Y2 − Y20)

2] + [(X2 − X20)
3 + Y0(X2 − X20)

2(Y2 − Y20)

+X0(X2 − X20)(Y2 − Y20)
2 + (Y2 − Y20)

3]. (5.10)

Separating the terms of various types according to their degrees in X and in Y , the
relation (5.7) assumes the following form:

h[P 2
1 − (P1)

2] ≡ θ6 + ε6 + ε̃6 + ζ6 +
I 6

6

4
= 0 (5.11)

where θ6 is a sum of monomial terms of the type XiXjYkYl ; ε6 and ε̃6 are respectively of the
types XiXjXk and YiYjYk; ζ6 is composed of terms XiYj , and I 6

6 is, of course, independent
of X and Y . All terms are of degree six in v.

Let us first remark that the identity (5.11) has to be symmetric under the transformation (T̃ )
introduced in section 4—since the inversion of D preserves the constraint (2.3) of
unimodularity. Therefore, θ6 and ζ6 are both symmetric, and ε̃6 is the symmetric counterpart
of ε6. Further, as the identity obviously remains valid in the limit of free motion, where the
governing equations (see section 3) are homogeneous in X and in Y , each of the five terms
on the right-hand side of equation (5.11), being characterized by a different degree (in X and
in Y ) from that of the other terms, must be an integral of free motion, as is the last term, I 6

6 .
This is indeed true of the fourth term, which may be identified with the following combination
of integrals:

ζ6 ≡ 1
2 (η2ε4 − w6). (5.12)

The existence of the integral ε6, cubic in X, was mentioned in section 3.1:

ε6 = P 2X3
0 + PX1(X

2
1 − 3X0X2 − 2TX2

0) + (T X0 + X2)(T X
2
1 + X2

2). (5.13)

The integral ε̃6 has exactly the same form, after exchanging the roles of the Xn and Yn.
The integral θ6 involves a relatively large number of terms:

θ6 = −P 2

4
X2

0Y
2
0 + P(X0Y1 + Y0X1)[TX0Y0 + (X0Y2 + Y0X2) + X1Y1]
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−P

2
X0Y0(X1Y2 + X2Y1) + {T 3X2

0Y
2
0 + 2T 2X0Y0(X0Y2 + Y0X2)

+T (X2
0Y

2
2 + 3X0X2Y0Y2 + X2

2Y
2
0 ) + X2Y2(X0Y2 + Y0X2)}

+{T 2X0X1Y0Y1 + TX1Y1(X0Y2 + Y0X2) − 1
4 (X1Y2 − X2Y1)

2}. (5.14)

6. The last integral

6.1. The triple product ( �j ; v �j ; v2 �j)
Knowing now the seven integrals: Ê, �J 2, J3, K1, K2, K3 and I6 (where the Ki are the (zero)
components of vorticity), one more integral is still needed to ensure Liouville integrability.
In a recent article (Gaffet 2000b) I conjectured that it might have as leading term the triple
product

- ≡ ( �j ; v �j ; v2 �j)
which has the desired properties of first, being an integral of free motion (as shown in the
above-mentioned work) and, in addition, of vanishing identically in cases of rotation around a
principal axis. This motivated an attempt at determining the expression of this triple product-,
in terms of the new set of variables T , P , X and Y . The form of the result turns out to be
intimately related to that of the algebraic constraint discussed in the preceding section:

- = ε6 + ζ6 +
I 6

6

2
. (6.1)

Unfortunately, it appears that there exists no exact integral of motion whose leading term
coincides with the above expression: direct calculation of the next term (fourth degree in v),
following the method of section (5.1), leads to an over-determined system of equations whose
compatibility conditions are not satisfied (under the assumption that the sought for integral
admits a polynomial formulation).

6.2. The last missing integral

The analysis of the preceding section 5 suggests a way out of this difficulty: to start from

-̃ ≡ (
�̃
j ; v �̃

j ; v2 �̃j) as leading term instead of -, in view of the fact that -̃ shares with - the
two fundamental properties of being an integral of free motion—since

-̃ ≡ ε̃6 + ζ6 +
I 6

6

2
(6.2)

and of vanishing in block-diagonal cases, since �̃
j then is, as well as �j , an eigenvector of v.

(Let us remark here that this entails the relations ε6 = ε̃6, and θ6 = ζ6 + 3
4I

6
6 in such cases.)

Let us then look for an exact integral whose leading term is L6
6 = -̃, i.e.

L6
6 = ε̃6 + ζ6 +

I 6
6

2
. (6.3)

The next term in its expansion, L4
6, of degree four in v, is given by (see section 5.1)

−dF (L
4
6) = d

du
(L6

6)

= d

du
(ε̃6) +

d

du
(ζ6) +

1

2

d

du
(I 6

6 ) (6.4)
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where d
du (I

6
6 ) has already been calculated (see equation (5.1)), and

1

3

d

du
(ζ6) = {3P(X0X2 − X2

1) + 2PTX2
0 − 2TX1(T X0 + X2)}

+{T 2Y1 − 3PT Y0 − 9
2PY2} +

{
PX0Y

2
1 − 5

2PX0Y0Y2 − PX2Y
2
0

−7

3
PTX0Y

2
0 +

T 2

3
X0Y0Y1 +

T

3
X0Y1Y2

− 2
3TX1Y

2
1 − 4

3TX1Y0Y2 − TX2Y0Y1 − 3
2X1Y

2
2 − 1

2X2Y1Y2

}
(6.5)

1

2

d

du
(ε̃6) = 2TX0Y0(PY0 − T Y1) + 3P(X0Y0Y2 − X1Y0Y1 − X0Y

2
1 )

+2T Y2(Y0X1 − X0Y1) + TX1Y
2
1 + 3X1Y

2
2 . (6.6)

The equation (6.4) defining L4
6 does admit a solution of polynomial form:

L4
6 = I 4

6

4
− 3{T (X2

1 + 2X0X2) + 3(X2
2 − PX0X1)} − 3

{
PY0(X1Y0 + 1

2X0Y1) + 2T 2X0Y
2
0

+T Y0(X1Y1 + 2X2Y0 + 3X0Y2) + Y2(2X2Y0 + X0Y2) +
Y1

2
(X1Y2 − X2Y1)

}
.

(6.7)

Furthermore, the aboveL4
6 turns out to be an integral of the system in its low-velocity limit (see

section 4); therefore L6
6 +L4

6 is an exact integral of the complete system (2.7)–(2.9), including
the effect of pressure.

7. Conclusion

The present reformulation of the problem of Ovsiannikov and Dyson, in terms of a set of
permutation invariant variables, leads to a differential system (equations (2.7)–(2.9)) which
possesses the Riccati-like property that the derivative of any variable is an at most quadratic
function of all.

In this formulation, the algebraic constraint (det D = 1) assumes a non-trivial form; it
is composed of several (five) separately homogeneous parts that, owing to the form of the
differential system, must be integrals of free motion, that is, integrals of the limiting form of
the system at high velocities. This turned out to be the key to the determination of the two
integrals which were needed for Liouville integrability. One of these five homogeneous parts
(see equation (5.11)) indeed constitutes the leading term (in the limit of high velocity) of a
new integral I6, while the sum of two other parts (ε̃6 and ζ6) leads to the integral L6.

Another important property of the algebraic constraint is its symmetry under inversion of
the diagonal matrix D, i.e. the transformation (denoted (T̃ )) that exchanges the Xiand the Yi .
This accounts for the existence of (T̃ ) symmetrical integrals of free motion, such as θ6 and ζ6,
and of a (T̃ ) symmetrical pair of integrals (ε6 and ε̃6), in spite of the lack of symmetry of the
equations of motion themselves in the high-v limit.

As a result, the vector �̃
j which is associated with the angular momentum vector �j by

the symmetry turns out to play an important role (as seen in particular in section 4: see e.g.
equation (4.6)). Together with the decomposition into five distinct homogeneous terms of the

algebraic constraint, the consideration of this new vector �̃
j was the key to the identification,

performed in section 6, of the leading term of the last integral, which is just the triple product

(
�̃
j ; v �̃

j ; v2 �̃j).
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Appendix A. Explicit Hamiltonian formulation

The equations of motion (2.1) considered in the present paper have been derived in an earlier
work (Gaffet 2000b) from Dyson’s equation:

FT F̈ = Te (A.1)

which represents Hamiltonian motion of a point mass in a potential in nine-dimensional
Euclidean space (Dyson 1968). Our system (2.1) represents however a distinct Hamiltonian
motion, which takes place in the curved eight-dimensional space O(3)×S2 × O(3), where the
two O(3) are the rotation groups spanned by the rotation matrices O1 and O2 (in that order),
and S2 is the unit two-sphere, here parametrized by the diagonal unimodular matrix D (or
equivalently, by the two coordinates X0 and Y0).

In the present problem, where there is no vorticity, the time evolution of O2 (the matrix
of rotation in Lagrangian space) is entirely deducible from that of O1 (the matrix representing
the orientation of the ellipsoidal cloud in ordinary space); as a result the system (2.1) turns
out, as we show below, to describe a simpler Hamiltonian motion, which takes place in the
five-dimensional space O(3) × S2.

We expect the motion to be derivable from a Lagrangian which is the difference between
kinetic and potential energies. The position of the point mass on the sphereS2 being represented
by the unit vector �r ≡ �D/

√
X0 (where �D ≡ (D1,D2,D3)), the kinetic energy of the spherical

motion is

�̇r2

2
= 1

2X0

(
�̇D −

�DẊ0

2X0

)2

=

 �̇D2

2X0
− Ẋ2

0

8X2
0


 . (A.2)

The dot here represents differentiation with respect to canonical time t , which differs from the
independent variable u used in equation (2.1), as

du = X0 dt. (A.3)

As a result the angular velocities ω̂ (in the moving frame), which correspond to the canonical
time-derivative Ȯ1 of the rotation matrix, differ from the ω (see equations (2.4), (2.22)
and (2.23)) by a factor X0:

ω̂i = X0ωi. (A.4)

The kinetic energy of rotation is thus expected to be expressed by

1
2

3∑
i=1

jiω̂i (A.5)

where the ji are the components of angular momentum in the moving frame, given by
equation (2.22):

ji = Î 2
i ω̂i

X0Ii
. (A.6)

Lastly, the potential energy term is, according to the expression (2.21) of the integral of energy,
3
2X0, i.e.

3
2
�D2.
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This leads to the following Lagrangian formulation:

L =

 �̇D2

2X0
− Ẋ2

0

8X2
0


 +

1

2X0

3∑
i=1

(
Î 2
i ω̂

2
i

Ii

)
− 3

2
�D2 (A.7)

(where X0 ≡ �D2; Ẋ0 ≡ 2 �D · �̇D), from which a Hamiltonian may be derived. Writing down
the Euler–Lagrange equations, or the corresponding Hamiltonian equations of motion, the
system (2.1) is recovered.

It is worth noting the following values of the terms in the above Lagrangian, in terms of
the variables (Xn, Yn) introduced in the present paper:

�̇D2

2X0
≡ X0X20

2

Ẋ2
0

8X2
0

≡ X2
1

2

1

2X0

∑
i

(
Î 2
i ω̂

2
i

Ii

)
≡ X0

2
(X2 − X20)

3
2
�D2 ≡ 3

2X0

(A.8)

—therefore the value of the Hamiltonian deduced from L is precisely Ê, given by
equation (2.21), as it should be.

Appendix B. Functional independence of the five integrals of motion

As shown in appendix A, the differential system considered here represents Hamiltonian motion
in five-dimensional (curved) space, so that five functionally independent integrals of motion
(Ê, �J 2, J3, I6 and L6) are required for Liouville integrability.

Let us first remark that the integral J3, whose expression explicitly involves the coordinates
of the space O(3), must be independent of all the other integrals. It is thus sufficient to show
that �J 2 is independent of Ê (it obviously is), that I6 is independent of Ê and �J 2 and lastly that
L6 is independent of Ê, �J 2 and I6.

I6 is at least independent of Ê and �J 2 in the block-diagonal case, since all three integrals
may then be given arbitrary values (Gaffet 2000a; see in particular equation (6.6) therein);
therefore I6, Ê and �J 2 cannot be functionally dependent in general.

For the same reason (recalling that L6 vanishes in block-diagonal cases), L6 cannot be
functionally dependent on Ê, �J 2 and I6 without the function L6 (Ê, �J 2, I6) being identically
zero—which it is not (it is easy to find one point in phase space where L6 differs from zero:
in fact, almost any point will do).

We conclude that the five integrals of the motion are functionally independent.
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